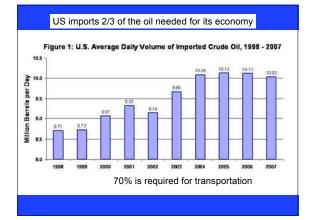
US Energy Mandates and the Promises of Biofuels

Dr. Elena del Campillo BSCI442 October 30, 2008

THE 21ST CENTURY AMERICA'S CHALLENGES:


- **1- SECURE ENERGY FUTURE**
- 2- DECREASED DEPENDENCE ON FOREIGN OIL
- 3- ECONOMIC GROWTH
- 4- SUSTAINABLE GROWTH
- 5- PROTECT THE ENVIRONMENT
- 6- PROTECT THE CLIMATE

Reasons for Concern

- Increase in world population
- · Increase demand for Energy World Wide
- Current dependency on fossil fuels
- · Finite resources of fossil fuels
- Global Warming

US National Energy Challenge

- REDUCE OUR DEPENDENCE ON CRUDE OIL
- US ECONOMY IS TIED TO PETROLEUM PRODUCTS
- DANGER TO OUR NATIONAL SECURITY

US oil import bill:

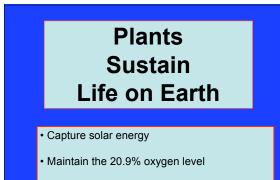
2007...... \$327 billion 2008...... should easily top \$400 billion.

MORE IMPORTANTLY

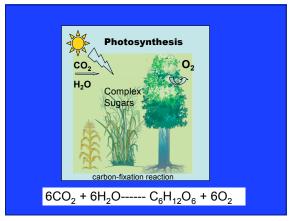
Domestic oil crude production is falling
Conventional oil production could peak in the near future.

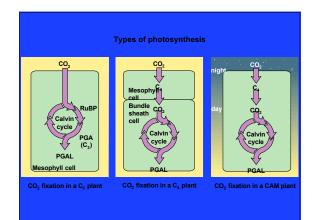
Several studies agree on these key issues:

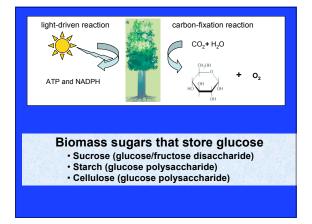
- 1- Current trends in energy usage are not sustainable
- 2- Are a security risk
 3- Strengthen National Energy Security by Reducing Dependence on Imported Oil

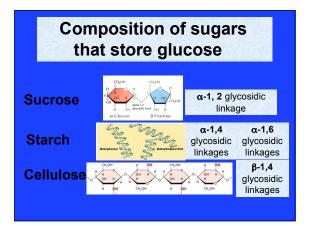

mericans are addicted to foreign oil State of the Union Address, 2007

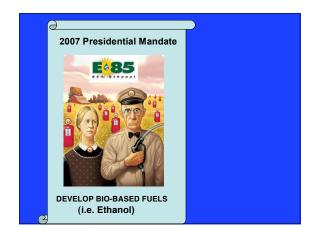
4- No single solution will secure the energy future 5- Biofuels can be part of the transportation energy.

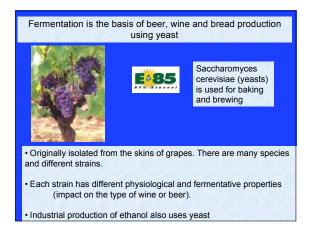

Biofuel: A fuel that is derived from biomass. Biomass: any plant material that can be used as a source of energy

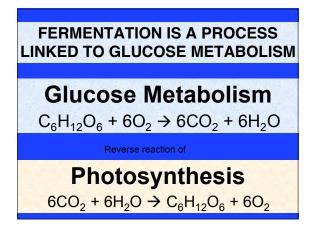

Promise of Biofuels

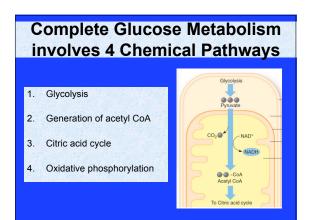

- **Strengthen Energy Security** •
- Assist Agricultural Industry
- **Create Jobs** •
- **Develop Local Economies**
- Benefit the Environment

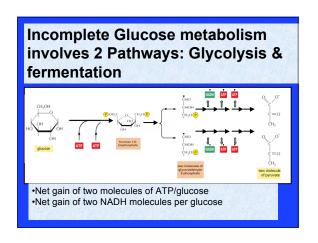


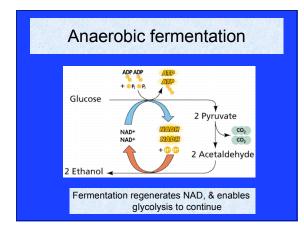

· Build, anchor and hold water in soil

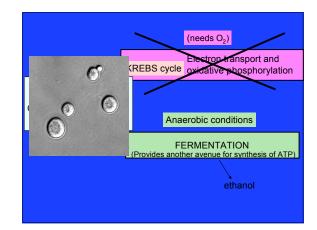


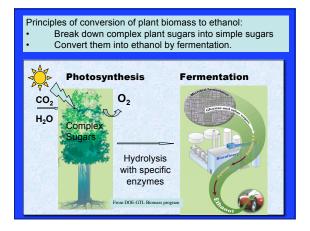












Why Ethanol?

• In 1896, Henry Ford built his first automobile, to run on pure ethanol.

• By 1920 gasoline became the motor fuel of choice.

 In 1988 ethanol was added to oxygenate gasoline and reduce smog (Gasoline blends).

US ENERGY MANDATES

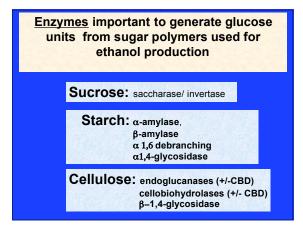
- In 2004 all gasoline sold in the US was required to carry 5.6% ethanol to replace the fuel methyl tertiary butyl ether, or MTBE, which was banned as pollutant of groundwater.
- In 2005, The Energy Policy Act increased the mandate to blend gasoline with 10% of <u>corn-ethanol</u>.
- In 2006 State of Union Address President Bush introduced a mandate to develop ethanol derived from <u>cellulosic biomass</u>.

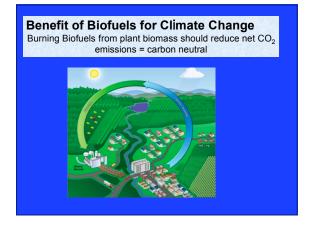
In 2007 Congress passed an Energy Bill that raises the targets for ethanol production.

2008
2022
2050

9 billion gallons 36 billion gallons 250 billion gallons from cellulosic-ethanol

GOAL The 30 X 30 initiative


Replace 30% gasoline consumption with ethanol by 2030.

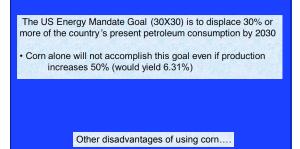

1 gal of gasoline = 1.4 gal of ethanol.

Consumption in 2007 ~ 42 Bgal gasoline/year.

Need to produce ~ 60 Bgal ethanol per year.

Biotechnology for Ethanol Production Raw material Collection & preparation of raw material Hydrolysis by enzymes Adding enzymes to generate glucose Fermentation Adding yeast to ferment glucose & generate ethanol ¥ Downstream processing Recovery and purification ¥ from the medium or cell Ethanol mass

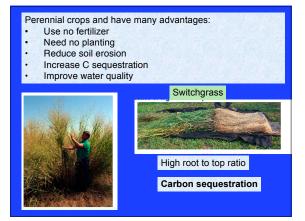
- When fossil fuels are consumed, carbon sequestered for millions of years is released into the atmosphere.
- When ethanol is used as biofuel, the CO₂ released by combustion is recaptured by photosynthesis & the production of new biomass
- A gallon of gasoline generates 19 pounds of CO₂
- A gallon of Ethanol 12.5 pounds of CO₂
- If 1.4 more ethanol to drive same distance CO2 for ethanol is ~17 pounds CO₂
- Moderate reduction of CO₂ emission per same distance .raveled

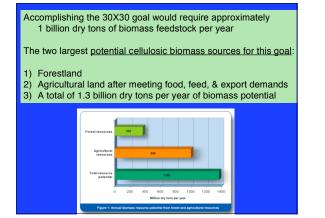

What are the biomass resources of the United States capable of producing a sufficient & sustainable supply?

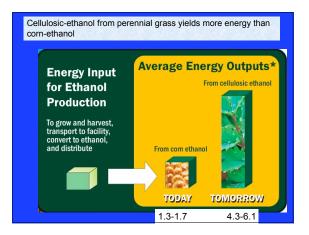
- 2. CORN GRAIN
- 3. CELLULOSE
- 4. Need to produce ~ 60 Bgal ethanol per year.

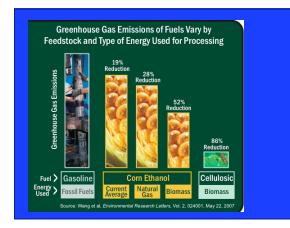
Current corn-grain yields are about 4.5 tons/acre. In 2007, US planted 90.5 million acres of which only 15% of the corn harvested was used for ethanol: ~5.4 Bgal of ethanol

•Ethanol production from Starch competes with food supply

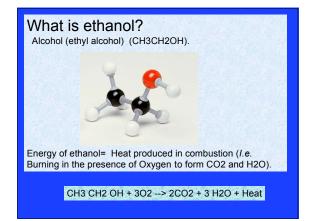


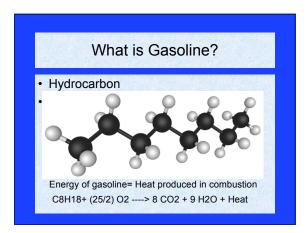

•Ethanol production from starch •Is not sustainable •Increase GHG




WHAT OTHER CROPS ARE BEING CONSIDERED

The "Ideal" Biomass Crop?	Corn	Short-Rotation Coppice*	Perennial Grass
4 photosynthesis	*		*
Long canopy duration		*	*
Recycles nutrients to roots			*
Clean burning			*
Low input		*	*
Sterile (noninvasive)	N/A	(★)	M.g.**
Winter standing		*	*
Easily removed	*		*
High water-use efficiency			*
No known pests or diseases			M.g.
Uses existing farm equipment	*		*





Basics of gasoline and ethanol.						
	GASOLINE Hydrocarbon	ETHANOL Alcohol				
	Density of gasoline = 3.0 kg/gallon	Density of ethanol = 3.5 kg/gallon				
	Combustion of one gallon of gasoline releases 44 kJ/g (kilojoules per gram).	Combustion of one gallon of ethanol releases 27 kJ/g				
	Freezing point, °F gasoline= -40	Freezing point, °F ethanol= -173.2				

COMPARING COMBUSTION OF GASOLINE & ETHANOL

A. Combustion of gasoline [assuming it is pure octane (C8 H18) : 8C and 18 H.]

C8H18+ 25/2 O2 ----> 8 CO2 (gas) + 9 H2O + Heat (44 kJ/g)

B. Balanced equation for combustion of ethanol (CH3CH2OH).

CH3CH2OH + 3O2 -----> 2CO2 (gas) + 3 H2O + Heat (27 kJ/g)

IN BOTH CASES THE COMBUSTION OR IGNITION GENERATES GAS & HEAT HOT GAS EXPANDS AND GENERATE PRESSURE

How car engines work?

- A car engine is an internal combustion engine
- The engine converts gasoline into motion
- · Gasoline is burned inside an engine